
Pergamon 

Inr. J. Heat Mass Transfer. Vol. 41, No. 16, pp. 2455-2467, 1998 
0 1998 Elsevier Science Ltd. All nghis reserved 

Printed m Great Britain 
ool7-9310/98 $19.00+0.00 

PII : soo17-9310(97)00335 

Temperature distribution in swirling jets 
V. SHTERN,t A. BORISSOV and F. HUSSAIN 

Department of Mechanical Engineering, University of Houston, Houston TX 77204-4792, U.S.A. 

(Received 20 February 1997 and injinalform 23 October 1997) 

Abstract-Analytical solutions of the energy equation are obtained showing strong effects of flow swirl : 
(a) significant increase in heat exchange, (b) heat isolation of a wall, (c) formation of temperature fronts 
and (d) flame stabilization in vortex burners. Two problems are studied in detail : (i) a point source of heat 
at the origin of a swirling jet submerged in an infinite fluid and (ii) heat transfer from an isothermal wall 
near a swirling jet, The paper explains the physical mechanism of effects (a-d) and shows the means to 

control them. 0 1998 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

Swirl significantly influences heat and mass transfer 
in many natural and technological flows. Swirl is used 
in vortex burners and chemical reactors to stabilize 
the flame front and to increase the surface area across 
which heat and mass exchange occurs [l]. In vortex 
devices, centrifugal acceleration can be as high as lo4 
times the gravity and provides useful stratification of 
temperature and density [2]. Hot low-density fluid 
collects near the a.xis of rotation, i.e., away from side- 
walls, while the near-wall region consists of cold high- 
density fluid. Internal recirculatory domains (‘bub- 
bles’), typical of swirling flows, are favorable for stable 
combustion providing thermal feedback and fuel pre- 
heating [3]. Swirling fuel jets are also used to enhance 
mixing in scramjet engines [4]. In natural flows, such 
as tornadoes or firestorms, swirl induces a tem- 
perature front, ie., a thin layer separating cold and 
hot air. A particularly striking result of swirl is the 
Ranque effect [S, 61. 

Despite these and many other applications, little is 
known about the fundamentals of heat transfer in 
swirling flows. Although effects of swirl have been 
observed, synthesizing experimental data has proven 
difficult. One reason is the large number of control 
parameters, and another is the swirling flow sensitivity 
to external disturbances. For these reasons, an empiri- 
cal search of optimal parameters for heat transfer is 
not efficient. Numerical simulations suffer from simi- 
lar limitations and the additional technical difficulties 
related to complex flows. 

Thus, analytical solutions are useful for (a) a clear 
understanding 01‘ the mechanism of the influence of 
swirl on heat transfer, (b) a detailed investigation over 
a wide range of control parameters and (c) opti- 
mization for a p,articular problem. Also, they would 
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indicate parameters at which further experimental and 
numerical studies are to be carried out. Unfortunately, 
obtaining analytical solutions for the Navier-Stokes 
and heat equations is a difficult task. Rumer’s solution 
[7] for a point heat source at the origin of the Landau 
jet is available, but no result has been found for con- 
vective heat transfer in swirling flows. 

Recently, a family of analytical solutions describing 
swirling flows in conical domains, has been obtained 
as functions of the cone angle, circulation and flow 
force [S]. Here we apply and expand these solutions 
for heat transfer in swirling jets induced by a half-line 
vortex in free space and normal to a wall. The jets 
model tornadoes, outflows of vortex chambers, air- 
craft trailing vortices and near-axis flows in vortex 
burners. The jets have features typical of swirling flows 
including : (i) appearance of recirculatory zones, (ii) 
significant decrease in pressure near the rotation axis, 
and (iii) multi-stability and jump transitions between 
regimes [8]. Conical similarity also permits analysis of 
turbulent jets by interpreting viscosity as eddy (tur- 
bulent) viscosity ; this has been justified for swirl-free 
round jets by Schlichting [9] and for swirling jets by 
Squire [lo] and others [ 1 l-l 31. One can thus interpret 
these solutions to be those for the mean fields of vel- 
ocity and temperature in practical turbulent flows. 

The paper deals with two heat transfer problems : 
(i) point source of heat at the origin of a swirling jet 
in a full space and (ii) heat transfer through a swirling 
jet from a wall to ambient fluid having uniform but 
different temperatures. These two problems allow us 
to elucidate the role of swirl in heat transport in jets, 
which is the main goal for this paper. 

GOVERNING EQUATIONS 

We address the Navier-Stokes equations for a 
steady motion of an incompressible fluid, 

(v.V)v = vAv-Vppip, V-v = 0 (1) 
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NOMENCLATURE 

A dimensionless parameter for force F x> Y dimensionless coordinates 
C” specific heat Z axial coordinate. 
C, C3, C, integration constants 

C, pressure coefficient 

JO flow force 
Greek symbols 

k thermal conductivity 
r circulation 

M Long’s parameter II> r scaled polar angle 

NU Nusselt number 
0, 4 polar and azimuthal angles 

dimensional and dimensionless 
9 

P> 4 
dimensionless temperature 

V 
pressure 

kinematic viscosity 

Pr Prandtl number P density 

Q total heat flux from the point source 
ICI, Y dimensionless and dimensional 

r spherical radius 
stream function 

Ro, Rossby number-the ratio of 
V, A gradient and Laplacian. 

maximal radial/swirl velocities 
Re Reynolds number Subscripts 
Sr = Ro;’ swirl number a axial 
t, T dimensionless and dimensional m maximum value 

temperature S swirl 
v, u, v velocity vector and its components 1, 2, b quantities related to regions 1, 2 and 
n, w scaled radial and swirl velocities boundary layer. 

and conical similarity flows which have the rep- 
resentation, 

v, = -v$‘(x)/r; vO = -v$(x)/(r sine), 

v# = vr(x)/(r sin 0) p = pm +pv*q(x)/r*, 

Y = v+(x), x = cos0. (2) 

Here (r, O,q5) are the spherical coordinates (see Fig. 
1); (v,, vo, v,), p and ‘P are velocity components, 
pressure and the Stokes stream function; $, I- and q 
are dimensionless functions; and the prime denotes 
differentiation with respect to x. Using (2) reduced 
(1) to the system of ordinary differential equations 
(ODE), 

(1 -x2)tj-2x$-f~2 = F (34 

(I -X2)~ = 2rr (3b) 

(1 -x2)1-~ = +r-' (3c) 

where the auxiliary function Fdefined by (3b) replaces 
q (see ref. [8] for more details). 

Next, we study heat transport in conical flows by 
considering the energy equation, pcJv * V) T = kAT+ S, 
in the spherical coordinates [14] : 

p~,(v,dTlar+r-‘v~aT/de+(rsin8)-‘v,aT/a~} 

= k{re2 a/ar(r* aT/&) + (2 sin Q)-‘a/at? 

Fig. 1. Schematic of the problem. Half-line vortex 1 is char- 
acterized by circulation Re, and flow force JO given on plane 
2 normal to the line vortex. There are two flow cells separated 
by conical surface 19 = 0,. Curves 3 and 4 show typical stream- 
lines of the meridional motion. (r, 0,4) are the spherical 

x (sin 0 aqae) + (r sin 8) -2a* T/a+‘} + S (4a) coordinates. 
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where S denotes a heat source. Using (2) reduces (4a) 
to 

[(l-x2)T’]‘+(l -X’)-‘T,$,$+T5~+T< 

+Pr{$‘T<--II/T’-I(l-x2)-‘T4}+s=0 (4b) 

where s = ?S/k, 5 = In Y, Pr = pc,vlk, and the indices 
denote differentiation with respect to 5 and 4. We 
consider Pr and s independent of T, and, therefore, 
(4b) is a linear equation. Since the coefficients of (4b) 
are functions of x only, the Laplace-Fourier trans- 
formation with respect to 5 and 4 reduces (4b) to 
ODE. A general three-dimensional (3-D) temperature 
field can be represented as a superposition of the nor- 
mal modes, 

T,, = 9,,(x) exp(a5 + im 4). (5) 

Here m = 0, f 1. f 2, , c( is a complex number, and 
9,% is governed by the equation 

+Pr{[a~‘-~imr’(l-x2)-‘]9,~-~11/9~~}+s,~ =o (6) 

where s,= is the normal-mode projection of s. Thus, 
owing to conical similarity of the flow, a 3-D heat 
problem is reduced to decoupled equations (6) for 
9,,,= which significantly simplifies the analysis. In fact, 
analytical solutions can be obtained, as shown in this 
paper. Thus, this approach provides a powerful 
method to solve a variety of thermal problems. Here 
we consider a few examples of both fundamental and 
practical interest. 

POINT SOURCE OF HEAT IN A SWIRLING JET 

The physical nature of a point heat source at the jet 
origin is specific to the flow. Practical examples include 
a hot jet issuing from a chimney into cold ambient 
air, firestorms, and thermal upflow above the ground 
heated by solar radiation. One more application is the 
temperature distribution in a tornado. A bulge is often 
observed at the mid-height of a tornado funnel [12]. 
Buoyancy drive,5 up warm air from the ground to the 
bulge along the funnel. Above the bulge, the vortex- 
breakdown flow transports heat to ambient cold air. 
The tornado funnel below the bulge can be modeled by 
a half-line vortex [8] with the heat source positioned at 
the tip of the vortex. 

Swirling jet 
Figure 1 shows a schematic of the problem. The 

half-line vortex 1 is located at 0 = 7~, i.e. x = - 1. The 
dimensionless control parameters are the flow force, 
Jo, acting on plane 2, z = r cos 8 = const > 0, and the 
vortex circulation (I at x = - 1) which is denoted 
here as the swirl Reynolds number Re,. Curves 3 and 
4 show the meridional section of typical stream 
surfaces. A useful characteristic is Re, = -t,!/(l) = 
ru,/v, u, is the velocity on the free part of the symmetry 

psi=. 1,0.5,1,2,4,6 

1 I 

0.5 

2 

0 

-0.5 
0 0.5 1 

rsine 
Fig. 2. Meridional streamlines of the one-cell flow at 

culation Re, = 20 and axial velocity Re, = 0. 
cir- 

axis, x = 1. This problem is solved numerically for 
finite Jo and Re, using the algorithm reported in 
Section 2 of ref. [S]. In this paper, we concentrate 
only on the results needed for the thermal problems 
considered. 

The flow can be viewed as a superposition of the 
meridional motion and swirl. The swirl distribution 
is simple: circulation is uniform on conical surfaces 
x = const and its value monotonically decreases from 
I=Re,toI=Oasxgoesfrom -1 to l.Apattern 
of the meridional motion is more complicated : it can 
be one-cellular (Fig. 2) or two-cellular (Fig. 3) 
depending on Re, and Jo. The surface, 0 = 0, (where 
II, = 0), separates the flow cells (see Figs. 1 and 3). 

As Re, + co, a strong jet develops which is con- 
solidated near either the axis, x = 1 (Fig. 2), or the 
separating surface, x = x, = cos 0, < 1 (Fig. 3). This 
jet is a viscous layer while the flow outside the jet is 
inviscid. The corresponding solutions of the Euler and 
boundary layer equations for the two-cell flow (Fig. 
3) are [8] : 

+=$, =$Re,((l+x)[3x,+l-(3+x,)x]/ 

(1 +x,)}“’ (7a) 

q = q, = --aRei [3x$+1-(l-xs)x]/ 

[(l +x,)(1 -x*)1 (7b) 
for the inviscid vertical flow in - 1 < x < x, (region 
I in Fig. 1) and 
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psi-3 s-2.-1,-.5,0 

0.5 

rsine 
Fig. 3. Meridional streamlines of the 

Re, = 20 and 8, = 45”. 
two-cell flow at 

tj = t,b2 = -iRe,(l -x)[(l +x,)/(1 -x,)1”’ (8a) 

q = qz = -;Re,Z(l +xJ[(l+x)(l-x,)] (8b) 

for the irrotational flow in x, < x < 1 (region 2 in Fig. 
1). The boundary layer solution in the vicinity of 
x = x, is 

$ = $b = -fRe,(l -x,Z)“‘tanht, 

5 = aRf?s(x-XS)/(l -xi)‘!* (9a) 

q=qb= -iRef[x,+(l-x,)tanh’t]/(l-XJ (9b) 

and which can be integrated to 

F = i Re,(l - tanh 5). (9c) 

Solution (SC) is also a uniform approximation for 
swirl in the entire region, - 1 < x < 1. 

Although (7)-(9) are deduced for Re, >> 1, these 
solutions well approximate the flow even for moderate 
values of Re,. Figure 4 shows the numerical (solid 
lines) and asymptotic (dotted lines) results for the 
radial u = rv,/v and swirl w = rv,/v velocities at 
Re, = 20 with x, = 0.707 (0, = 45”). This x, value is 
of especial interest since it corresponds to the maximal 
thrust of the swirling jet [8]. While the numerical and 
analytical results for w coincide within the accuracy 

0.0 0.5 1 .o 
x 

Fig. 4. The numerical (solid lines) and analytical (dotted 
lines) profiles of the radial u, swirl w velocities and tem- 
perature t on a sphere r = const at Re, = 20, 0, = 45” and 

Pr= 1. 

of the drawing in Fig. 4, the results for u are different. 
A reason is that u = -$’ and, as usual, a difference 
is derivatives is larger than that in functions. 

Heat problem formulation 
Since the heat flux from the source is invariant for 

any surface surrounding the origin, temperature has 
the representation, 

T = T, + Q9(x)/(4&) (10) 

where T, is the ambient temperature, Q is the total 
heat flux from the source, and 9 is a dimensionless 
function satisfying the integral condition, 

S’ 
$(l-Pr@)dx=2. (11) 

-1 

Substituting c( = - 1, m = 0, s,,,, = 0 and omitting the 
indices in (6) yield the equation : 

[(l-x’)%] = Pr(t+M)’ 

(1 -x2)9’ = Pr*S (12) 

where the integration constant is taken as zero for 
temperature to be bounded on the axis, x = 1. To 
numerically calculate a temperature distribution, at 
first, we integrate (12) from x = 1 with 9(l) = 1 to 
x = - 1. Solving the ‘O/O’ indeterminacy in (12) at 
x = 1 yields 

9’(l) = -Pr$‘(1)/2. (13) 

After the integration, we rescale 9 to satisfy (11). At 
Pr = 0, the solution is 9 = 1 corresponding to heat 
conduction only. At Pr # 0 and moderate Res, we find 
solutions of (12) numerically. 
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(4 
1 

rsin0 

0 0.5 1 

Fig. 5. Isc’therms for (a) one-cell flow (Fig. 2) at Pr = 1, and for the two cell flow (Fig. 3) at Pr = 1 (b), 
0.01 (c), and 7 (d). 

0 0.5 
rsin0 

Cd) 

Numerical result:; 
Figure 5 shows isotherms for a few specific par- 

ameter values. Figure 5(a) and (b) are obtained at 
Pr = 1 for (a) one-cell flow shown in Fig. 2 and (b) 
two-cell flow shown in Fig. 3; the plume is con- 
solidated near th’: axis in Fig. 5(a) and has the annular 
conical shape in Fig. 5(b). The surface area of the 
annular plume is, significantly larger than that for the 
consolidated plume. This fact is very important for 
applications since the large plume surface provides 
better heat and mass transfer. 

Figure 5(c) and (d) correspond to the same flow as 
Fig. 5(b) but for (c) Pr = 0.01 and (d) Pr = 7 (these 
Pr values are typical for liquid metals and water, 
respectively). Thle plume thickness depends on Pr as 
usual : isotherms8 are nearly spherical surfaces in Fig. 
5(c) since the contribution of convection to heat trans- 
fer is negligible in comparison with that from con- 
duction [at Pr == 0,s = 1 as follows from (11) and 
(12)]. In contrast, the plume in Fig. 5(d) is significantly 
thinner than the annular jet, and the contribution 
from convection dominates that from conduction. 

While these numerical results illustrate the influence 
of swirl at particular parameter values, the following 
analytical solutions provide some general relations for 
heat transfer. 

Analytical solution for temperature in the two-cellflow 
Substituting + and 5 from (9a) in (12) and allowing 

Re,+co,weget 

9’= -2Pr9tanht (14) 

where the prime denotes the differentiation with 
respect to 5. Integrating (14) yields 

9 = S,(cosh c)-‘” (15) 

where 9, is an integration constant (and the maximal 
value of 9) to be found. Since 9, = 1 at Pr = 0 and 
9, decreases as heat transfer increases at fixed Q, the 
value of 9,’ characterizes a total/conduction heat 
transfer ratio. To find 9, for Pr # 0 and large Re,, we 
use the asymptotic form of (11) as Re, --) co, which is 

u, Pr Re, 
s 

9(coshl)-‘dt =4(1-x:)-“’ 
--m 

and (15) resulting in 

9;’ = aPrReS(l -xi)“‘A(Pr), 

A(Pr) = [” (cash <)-‘-“‘dt. (16) 
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Function A(Pr) (which can be expressed in terms of boundary layer approximation. Outside the jet, the 
the Euler gamma function) monotonically decreases irrotational region 2 (Fig. 1) disappears and the vor- 
as Pr increases. In particular, A(0) = 2, A(1) = 4/3, tical region 1 now occupies the entire interval 
and A(Pr) --+(~/PY)‘/~ as Pr -+ co. - 1 < x < 1, where the inviscid solution is 

When one models turbulence with the help of eddy 
viscosity and heat diffusivity, the case Pr = 1 is inter- 
esting since it is a typical value for the turbulent 
Prandtl number. For this case, 

$ = Re, [(1 -x2)/2]‘12, I = Re, 

and q = -fRe:/(l-x2). (18as) 

9;’ = Re,(l -x,2)‘j2/3 (17) 

as follows from (16). Thus, 9;’ (i.e. heat transfer 
efficiency) increases proportionally to the swirl Rey- 
nolds number Re, at fixed x,. 

According to (1 S), temperature exponentially 
decays, 9 = 9,2”‘exp(-2 Prltl), as 151 -+ co. A simi- 
lar decay in the boundary layer solution for the radial 
velocity means only that U, being O(Ref) inside the 
annular jet, becomes of O(Re,) outside the jet. To find 
the temperature outside the jet, one needs to solve the 
heat equation for the inviscid flow regions. Consider, 
for example, region 2 in Fig. 1 where the flow is irro- 
tational (this problem is simpler than that for region 
1). Substituting (8a) and (12) and integrating yield 

9 = C(l$-$, b = -fPrRe,[(l-x,)/(~+x,)]“~ 

where the integration constant C is found by matching 
this solution with (15). This gives C = 9,22p’/( 1 + xJb 
which means that in the irrotational flow, the tem- 
perature decays exponentially with respect to Re, as 
Re, + co A similar results is obtained ( from lengthy 
calculations omitted) for the vertical inviscid region. 
Thus, (15) is an excellent uniform approximation for 
the temperature in the entire region, - 1 d x < 1. 

According to (18), velocity and pressure are 
unbounded on the axis, so viscosity cannot be 
neglected in the vicinity of x = 1. The boundary-layer 
approach yields that all quantities are bounded and, 
in particular, u - O(Re:) and q - O(Rei). The inner 
variable is q = Ref(l -x) [8] or _JJ = q’j2 [15]. The 
Long number, M = 2nJ,/Ref, is the single controlling 
parameter as Re, -+ co. Important resulting charac- 
teristics (presented in Fig. 6) are I’,,,, = Re,/Ref (Re, 
is the maximum value of u), I’, = Re,/Ref and the 
pressure coefficient C, which is the ratio of the 
pressure drop to the dynamic head, C, = 
2(p, -p,)/(p&,), where pa is pressure on the axis and 
v, is the maximal radial velocity at a fixed r. Note 
that despite pa and v, being dependent on r, C, is an 
r-independent (i.e. global) flow characteristic. 

Figure 4 shows the numerical (solid curve) and ana- 
lytical (dotted curve) results for the normalized tem- 
perature, t = S/S,, at Pr = 1, Re, = 20 and 
x, = 0.707. One can see that the asymptotic solution 
is close to the numerical one despite Re, not being too 
large. Also Fig. 4 shows that the profiles of the radial 
velocity u and temperature t are similar but relatively 
shifted. The radial velocity profile in the annular jet is 
u = Re,coshe2 5, Re, = Rez18, as it follows from 
differentiation of (9a). Comparing this profile with 
(15) at Pr = 1, one can see that the Reynolds analogy 
is valid for distributions of the longitudinal velocity 
and temperature in the boundary layer limit. The 
difference between u and t in Fig. 4 is mainly due to a 
shift in the locations of the maxima. It follows from 
(12) that 9 is maximum where $ = 0, i.e. exactly at 
x = x,. On the other hand, u reaches its maximum at 
x, = x.,--4(1 +x,)(1 -x:)/Rei as Re, + co [8]. Note 
that the difference x,-x, at Re, = 20 (Fig. 4) is larger 
than the asymptotic estimate. Nevertheless, the Rey- 
nolds analogy is valid for the two-cell swirling flow as 
Re, + co. In contrast, the Reynolds analogy is not 
valid for the Long jet as we show below. 

As Long [15] found, there is a fold at 
M = A4r = 3.74 and two boundary layer solutions for 
each M > Mr (Fig. 6). The one-cell flow (V, > 0) cor- 
responds to the upper solution branch and the flow is 
two-cellular on the lower branch (except in the vicinity 
of the fold point). The maximum radial velocity is 
located on the axis (i.e., Vr, = V,) to the right of 
symbol ’ x ’ on the upper branch. As M + co, the 
Long jet transforms to the Schlichting round jet [9] 
along the upper branch and to the annular conical jet 
along the lower branch in Fig. 6. Figure 7 shows the 
velocity profiles, V, = u/ReI and Vm = w/ReZ, at 
points ad in Fig. 6. 

1.5 

1 

0.5 

0 

Temperature distribution in the Long jet 
The near-axis jet develops as Re, + 00 and x, = 1 

or x, + 1. This jet was studied by Long [ 151 using the 

Fig. 6. Pressure coefficient C,, axial V, and maximal radial 
V_ velocities as functions of the normalized flow force M in 

the Long boundary layer. 
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Vr -0.5 
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-0.1 
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0.2 

0.1 
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Fig. 7(a)-(d). Radial V,, swirl V+ velocities and temperature profiles at parameter values corresponding to 
pomts a-d Fig. 6 and Pr = 1. The broken curves in (b) show the numerical results for the entire space 

problem at Re, = 20. 
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Consider the heat problem for the Long jet. Sub- 
stituting r~ = Re: (1 -x) in (12) and allowing Re, -+ cc 
yield the boundary layer equation for temperature : 

v/9’ = -;Pr*9 

where the prime denotes differentiation with respect 
to q and $ is a solution of the Long problem. Inte- 
grating gives 

,=,,exp{-fP~~~~q-‘d~} (19) 

where 9, is the 9 value at the axis, n = 0. Note that 
(19) is not an analytical solution because there is no 
analytical expression for $. Curves t = S/S,,, in Fig. 7 
show the numericsal solutions of (19) at Pr = 1 for the 
corresponding flow fields. 

One can see that the profiles of t and V, are quali- 
tatively different. In Figs 7(c-d), V, is negative near 
the axis while t i,s, of course, positive. In Fig. 7(b), 
the V, maximum is located away from the axis while 

temperature maximum is on the axis. Although, the 
profiles of t and V, appear similar for small y in Fig. 
7(a), they are very different as y = + co. While V, + 
1/(2y) [15], (19) yields that 9 N exp(-Pry); i.e. 9 

decays significantly faster than V, as y + co. 
The fact that the Reynolds analogy is not valid in 

the Long boundary layer is due to the strong influence 
of the centrifugal force on the meridional motion. 
This effect is small near the axis where the meridional 
motion dominates swirl as shown in Fig. 7(a), but is 
large far from the axis. This occurs owing to different 
asymptotic behavior as the distance from the axis, 
r sin 8, goes to infinity ; the swirl velocity decays as 
(rsin@)-’ while the longitudinal velocity decays as 
(r sin 0)-4 in the Schlichting jet. 

Figure 8 shows dependencies of (a) 9, (the 
maximum temperature at a fixed r) on the Long par- 
ameter M and (b) 9; ’ (total/conduction heat transfer 
ratio) on the Rossby number Ro, = urn/v+,,, where 
v4,,, is the maximal swirl velocity at a fixed r. The solid 
curves represent the numerical results and the dashed 
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1.6 
1 (a) Al---- 

1.2 

-9m 

0.8 

0 4 8 12 16 0 1 2 Ro, 3 4 5 
M 

Fig. 8. (a) Maximal temperature 9, at r = const as a function of Long’s parameter M, and (b) 1/9m vs. 
Rossby number Ro, at Pr = 1. Curves Al and A2 are the asymptotes (23) and (20). 

curves are analytical asymptotes at Pr = 1. For an 
arbitrary value of Pr, (16) yields the asymptote, 

9;’ = 3PrMA(Pr)/(2a) as M + co, (20) 

which become 9, = $c/M at Pr = 1 (line A2 in Fig. 
8(a)) and can be also written as 9;’ = 8Ro,/3 (line 
A2 in Fig. 8(b)). 

Lines Al in Fig. 8(a) and (b) show the asymptote 
as M + co when the Long jet transforms into the 
round Schlichting jet. Using 5 = Re,( 1 -x)/4 in (12) 
and allowing Re, + cc we have 

[9’= -fPr*S (21) 

where the prime denotes differentiation with respect 
to [. Substituting the Schlichting solution, 
$ = 4[/(1+[), in (21) and integrating yield 

9 = 9,(1+<)-2” (22) 

where the maximal temperature 9, is an integration 
constant. Note that (22) coincides with Rumer’s solu- 
tion [7]. Applying the normalizing condition (11) we 
obtain 

9, = 1+ 1/(2Pr) or 9;’ = 2Pr/(l f2Pr) (23) 

which corresponds to lines Al in Fig. 8(a) and (b) at 
Pr = 1. It follows from (23) that 9;’ -+ 1 as Pr + co 
and 9;’ < 1 for finite Pr, e.g. 9;’ = 213 at Pr = 1. 

Thus, 9;’ for the Schlichting jet is less than that 
for the heat conduction (9;’ = 1). A reason for this 
surprising result is that heat spreads through a spheri- 
cal surface in the heat conduction case but in the 
Schlichting jet, only a small cross-section is involved. 
Outside the jet, the entrained flow transports heat 
back to the source, balancing heat diffusion and thus 
locking heat inside the jet. The increase in heat transfer 
due to convection by the jet does not compensate for 
the decrease in heat-exchange area. It is worth noting 
that this effect occurs in the swirl-free flow. Swirl dras- 
tically changes the temperature distribution. As it fol- 

lows from (17) 9; ’ + cc as Re, + co, and, therefore, 
swirl radically enhances heat exchange. It occurs 
despite temperature decaying exponentially in the nor- 
mal-to-flow direction in the swirling jet which is faster 
than the power law decay in the Schlichting jet. The 
swirl-induced increase in heat transfer is owing to the 
fact that the jet becomes annular with its cross-section 
area being larger (Rez2 times) than that for the 
Schlichting jet. Thus, our solution explicitly shows that 
swirl is a powerful means to intensify heat transfer. 
The fact that swirl induces a strong drop in the maxi- 
mal temperature as the distance from the heat source 
increases, can be utilized to make shorter thermal 
wakes of practical devices (e.g., submarines). Also, 
swirl plays the crucial role in heat transfer from a wall 
as the next problem shows. 

HEAT TRANSFER IN A NEAR-WALL SWIRLING 
JET 

Features of the near-wall jet 
A near-wall swirling jet is a three-dimensional 

boundary layer similar to those developing on swept 
wings of modern aircraft and in vortex combustion 
chambers. All velocity components are non-zero 
inside the boundary layer. As the distance from the 
wall increases, the swirl velocity tends to its non-zero 
ambient value (corresponding to the streamwise vel- 
ocity on swept wings) and the radial velocity tends to 
zero (corresponding to the cross-flow velocity on 
swept wings). Such an analogy is the primary motiv- 
ation for considering near-wall swirling flows, e.g. 
numerous studies of flow over rotating disks starting 
from ref. [ 161. 

Though both conical and disk flows model near- 
wall swirling flows, there is an important distinction : 
the tangential velocity is directly proportional to the 
distance from the rotation axis in the disk flow but 
inversely proportional to this distance in conical flows, 
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Fig. 9. Schematic of flows (a) near a rotating disk, (b) in a free radial swirling jet, (c) near disk 1 adjacent 
to fixed rigid wall 2. Curve 3 in Fig. 9(c) shows distribution of the swirl, ZJ+, or radial v,, velocity above the 
disk and wall at a fixed z. (d) Problem schematic for the near-wall swirling jet. A half-line vortex and axial 
force F, on the axis, 0 = 0, induce a flow whose typical streamline and velocity profiles, u+(z) and V,(Z) at 

a lixed r sin 0, are shown. 

as Fig. 9(a) and (b) illustrate. Figure 9(a) shows the 
dependence of vd and v, on the distance, r sin 0, from 
the axis (on the right side) and on z (on the left side) 
in the disk flow. Figure 9(b) shows similar depen- 
dencies for a conically similar swirling jet fanning 
along the symmetry plane, 0 = 90”. Figure 9(c) shows 
the dependence of v@ and v, (curve 3) on r sin 6 in a 
flow over rotating disk 1 adjacent to fixed rigid wall 
2 ; v4 and v, grow proportionally to r sin 0 over the 
disk and decay as (r sin 8)-’ over the wall as r sin 0 
increases. For a stagnation flow induced by a swirling 
jet of radius r, impinging normal to a wall, the disk 
and conical flows describe the near (r sin 0/r, < 1) and 
far (r sin 9/r, >> 1) fields, respectively. 

The far field can be modeled by Serrin’s vortex 
[ 131. Figure 9(d) fjhows the problem schematic for this 
conical flow. Sources of fluid motion are a half-line 
vortex of circulation v Re, located on the axis, x = 1, 
and force F, = 4n:v*r-‘A directed along the axis. There 
are a typical streamline of the meridional flow and 
profiles of the swirl, v&z), and radial, v,(z), velocities 
at a fixed rsin 0. Two dimensionless control 
parameters, Re, and A, characterize the swirling and 
meridional motions. Here we consider the case where 
force F, is directed downward, i.e. A < 0, inducing a 
downflow near the axis and a diverging flow near the 
wall (Fig. 9(d)). 

As A -+ co, a :strong viscous jet develops near the 
wall while the flow outside the jet becomes asymp- 
totically inviscid. The inviscid solution of (3) for this 
problem is 

r = Re,, F= 2Ax(l-x) (24) 

ti = -2[-Ax(l-x)1”‘. (25) 

According to (24), circulation r is uniform in 
0 < x < 1, and, according to (25), radial velocity 
u = -t+V is unbounded at x = 0. For this reason, a 
viscous boundary layer must develop to meet the non- 
slip condition on the wall. Consider a strong swirling 
jet (i.e., suppose that Re, + cc as A -+ - co) and intro- 
duce the inner variables by scaling : 

Y = TIRe,, @ = -F/Re,, 

W = -Il//Reil*, 9 = x Re:12, (26) 

where ye is the dimensionless distance from the wall ; 
W, W’ and y are the scaled normal, radial and swirl 
velocities, respectively. Using (26) and allowing Re, + 
cc reduce (3) to 

W’ = a-- W’/2, @” = 1 -y*, y” = - Wy’ (27) 

where the prime denotes differentiation with respect 
to q. A solution of (27) must satisfy the no-slip con- 
dition on the wall, W(0) = Q(O) = y(O) = 0. 

To start integration from q = 0, a’(O) and y’(O) are 
also needed. First, we take some tentative values of 
Q’(0) and y’(O) = y& and integrate the initial-value 
problem for (27). Matching of the obtained solution 
with (25) requires that y -+ 1 as q --* co. To satisfy this 
condition, CD’(O) is adjusted by the shooting procedure. 
In contrast, y& stays a free parameter. The physical 
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Fig. 10. Dependence of swirl ratio Sr on the swirl shear stress 
&. The vertical line (at b) separates the one- and two-cell 
flow regions. The inserts show typical profiles of the radial 

velocity. 

interpretation of this parameter is that & is a scaled 
friction factor for swirl: $,, = cR Ref’*/2, crs = 
2z,++,/pv&, where T#” is the shear stress on the wall and 
vgm is swirl velocity far from the wall. 

While the boundary layer problem has only one 
control parameter, &, the entire flow depends also on 
Re,. Parameter A is not independent now : as follows 
from the solution matching, A = -Re:“@‘(co)/2, 
where @‘(co) is known from the boundary layer prob- 
lem. Since @‘(co) has no evident physical meaning, we 
present the results using another parameter-the swirl 
ratio Sr = v~,/v,, where v~, and v,, are the 
maximum swirl and radial velocities as at fixed 
distance, Y sin 0, from the axis. 

Figure 10 shows the dependence of Sr on &. There 
is the maximum of Sr = Sr, = 0.839 at y’(O) = 0.417 
and two boundary layer solutions for Sr < Sr,. The 
radial flow is unidirectional for y’(O) > r: = 0.467 and 
there is the radial counter-flow for y’(O) i yi (see the 
sketches in the corresponding regions separated by 
the vertical line, y’(O) = rb, in Fig 10). Figure 11 shows 
the velocity profiles for (a) two-cell, (b) separation and 
(c) unidirectional flow patterns (see the corresponding 
points sac in Fig. 10). 

Heat problem for the near-wall jet 
Consider the case when the wall and fluid far from 

the wall have uniform but different temperatures, T, 
and T,. For this problem, a temperature solution 
needs only one normal mode with t( = m = 0 in (5), 
and (6) reduces to 

[(l -x*)9’]’ = Pr$9’. (28) 

Interpreting 9 as (Tw- T)/(T,- T,) leads to the 
boundary conditions, 

9 = 0 atx = 0 and 9 = 1 atx = 1 (29) 

which are the same as those for y = T/Re,. 
Near-wall boundary la_ver. For a strong jet and 

Pr 3 O(l), temperature is uniform in the inviscid flow 
(25) and 9 = I. Inside the boundary layer (26) and 
(27), (28) reduces to 

9” = - Pr W9’ (30) 

where the prime denotes differentiation with respect 
to g. Note that at Pr = 1, (30) coincides with equation 
(27) for y. Since the boundary conditions for 9 and y 
are also the same, one does not need to solve the heat 
problem (28) and (29) at Pr = 1 because distributions 
of temperature and circulation coincide. In particular, 
the y profiles in Fig. 11 shows also distribution of 3 at 
Pr= 1. 

Thus, the Reynolds analogy for distribution of the 
streamwise velocity and temperature is valid in this 
boundary layer. We reiterate that here vi plays the 
role of the streamwise velocity. To calculate heat 
transfer, the relation, St = c,/2, can be used, where 
the Stanton number St is a ratio of heat flux to the 
dynamic head [17]. Since the heat flux from the wall 
is proportional to the swirl shear stress, heat transfer 
increases with swirl. 

Large Prandtl number. Now consider the case, 
Pr >> 1, when temperature differs from its ambient 
value only in a thin near-wall layer even for small 
Reynolds numbers when there is no boundary layer 
for velocity. Since the thickness of this thermal layer 
is small compared with flow scales, we can use the first 
nonzero term of the Taylor expansion for $ in the 
vicinity of x = 0, $ = $“(0)x2/2. Note that + is nega- 
tive for the flow considered, e.g., see (25), and, there- 
fore, $“(O) is also negative. Introducing r~ = (-r//‘(O) 
Pr/6)‘j3x and allowing Pr + co reduce (28) to 

9” = -3$9’ (31) 

where the prime denotes differentiation with respect 
to q. The first integration yields, 9’ = exp( - q3)/C3, 
and the second integration gives 

3 = 
s 

‘exp(-q3)dqlC,, 
0 

s 

5 
CX = exp(--q3)dq = 0.5117. (32) 

0 

The obtained distribution of 9 is similar to the y dis- 
tribution in Fig. 11 (c). In particular, (32) results in 
the relation 

Nu = Cj’(r2t,Rp-‘v~2 Pr/6)“’ 

= C,‘(c, PrRe1/12)“3 (33) 

where Nu = St Pr Re, is the Nusselt number and 



‘,,,(~M/a~),,,(9/ld),-‘~ = nN 
UopqaJ aq1 Aq pau.laAo%? S! .xaJsueJl 1l?aq put? 
‘Xc,1 (E/Y Id - ) = h Yl!M W (ZE) Puv (I E) L‘l Paq?saP 
S! 6 ‘aSW Jallt?I aqJ UI '02 +Id Se &f N (O),e pUE 
I = “d Iv 6LS’O = (0)X ‘L’O = Jd JR PIOSO = (0)X 
alaT” ‘&M /W)(O),B = nN PUv c/I -?I Z,L “,M Z = ‘= 
~-eq~ spIa!A uognlos ayL .“;ad/%Z = J3 ~0~x3 
uog3p3 puz ‘1 paxy 1~ dq2oIaA Iwpsl Iwu!xsur ayl s! 
Win alaqrn ‘n/“‘n~ = ax raqurnu spIourCax asnpoJlu1 

'(IlaM sex 6lpoIaA IJFMS puz) 
I =1,-Z@ ~SMOgSaNn3u~laylpu~(~!e)~.0 = Id 01 
spuodswo3 6 aA.uw ploq ayl .uogeluasald lceduIo3 
I! 103 ‘EIf0.I = ;M ‘anleA urnur~xwu sy 01 paIecw s! 
1C~~3olaAa~~'(~~)30uo~~~~%a~u~uro~3Bu!~Insa~saIyo~d 
6 amlwadural pur!,~ .@JOIaA ayl s~oqs zI a&&J 

~M~~IJ~MSUO puadap~ousaopa~n~wadrual‘I = Adie 
aprDuulos u@e (ssQ Put! (0Q @nwv WO moJ3 
paIdno3ap SF (es~) 1w.p aas ~3 au() .& Mau aqlqi!~ 
lnq (0~) 30 ~103 ay3 su!elal uogenba &aua aql put? 

(9%X) /kM - = ,,A ‘ZlzM --Ir = ,M 

01 SUI.I03SUl?J~ (LZ) ‘Il'MS 
aAIoAu! lou OP ‘X&Z-) = k ‘&,, _ (VZ -I- = @)M 
‘saIqe!leA lauu! Mau ayL 'saypour uIa[qold 
~ah?Ih?punoqay~pue‘~~!~s .103lec[]uroq paIdno3un 
sawosaq uogwtba MOO ~~uo~p!.raul ayl ‘O+.JS sv 
'((3)II 531.~ aas Ta)_taKq d~epunoq:,yiu!YiI~dipoIaA 
Ie!pt?J aql~1!MpalBdZUo3IIBUlSSawO3aq61!301aAI"!Ms 
aql pq1 sueaw sfq~ 'MOIJ IIa3-au0 clyl u! sasizal3u! :h 
se sast2alDap AS lays s~oys OI aWT!d 'l+s yv'a& 
.MoIaq palap!suo:, ase3 aql103 p~s30 luapuadapu! 

sauro2aq MOD Ieuo!pfJauI ayi ‘DA~M~H .ic~uo MOB 
lauo!p!laur ayl %u!5~pocu dq 1 << .4dr 103 la3sueJl leay 
sl3a-W IJ!MS '(EE) u! E/I WM pa.=dmoD (PC) u! P/I 
--Iduo nN30 a3uapuadapMeI-.taModaylu!luauodxa 
la[It?tus ayl 01 speaI lsnf uogeledas MOM ‘SnyL 

(PC) p, , bZ/Ad (O),,,/fi - ) , b3 = nN 

c 
‘sz9s'o = Irp(,L-)dxa 

m J' 
= *3 

SaAg uol:lw%alu! uo y3!qM 
,&+ = ,,fl 01 (82) a3npa.l 00 +Id %I!MOIIE pUE 
X,,,bZ/~d(O),,,/f -) = h %~vow .9lE*(O),,,/fi = 4 
01 paypow aq 1stu.u uoycwn3 urt?aJis ayl 
.103 uoyluasaJdal ayl ‘IahaMoq ‘MC~~ Dypads s!y~lo+~ 
'((q)II %J) 0 = (o),,# = "2 alay!& asw uogeledas 
ayl_103 0 = no sp!pald (EC) "'z ssadls m?ays [e!pw ayl 
30 laMod ahysod ayl 01 Iw.xogJodold SF nN aws 

-[aA p~pm ayl ~03 ~01~23 uop~!q aql s! m$‘fld/8’2Z = % 

.d[an!j3adsaJ ‘01 %cf 1113 pue q‘u slu!odle sagpo~aa X [+%iS pm ,A [e!peJ aylJ0 Sa[goJd aqL'(Dl-@)I I ‘%!A 

S9PZ s~a[%np!~s u! uognq!qs!p alnleJadtuaL 



2466 V. SHTERN et al. 

Conical annular jet 
As & + 0, Sr also decreases (Fig. 10). The near- 

wall inflow (see the left insert in Fig. 10) becomes wide 
and, for this reason, the boundary layer approach 
must be modified. Consider the case where the flow 
cells are separated by conical surface, x = x,, with 
x, - O(1). As Re, + CO, a strong jet develops near 
x = x, = cos 8, and the flow outside the jet is inviscid. 
The corresponding solutions of the Euler and bound- 
ary layer equations are : 

1’ = 0, $ = x Re, [(l-x,)/(1 +x.)1”‘, 

0 < x < x, (irrotational flow region), 

y- 1, 

$ = -Re, {x$(1 -x)(1 -xl))‘[(2-x,)x-x,]}‘~*, 

x, < x < 1 (vertical flow region), 

y = f(1 +tanht), (36a) 

$ = -x, Re, [(l -x,)/(1 +x~)]‘/’ tanht, 

(36b) 

(annular jet), 

where 
5 = f(x-x,)Re,x,(l-~xp))‘.‘~(l+x~)-‘. 

Solution (36a) is also a uniform approximation for 
swirl in the entire region, 0 < x < 1. The radial 
velocity, u = Re,cosh-*t, Re, = iRez(l+ l/x$)-‘, 
dominates swirl in the annular jet and 
Sr = 2( 1 + l/x,)’ Re; ’ tends to zero as Re, -+ co. 
Here, x, is a relevant control parameter while A = 
-iRet (1-t l/x3-‘. 

The boundary-layer reduction of (28) for the annu- 
lar jet is 

9” = -2Pr%tanh< (37) 

where the prime denotes differentiation with respect 
to 5. The first integration of (37) yields 9’ = 
C(cosh~)-2P’ and the second integration gives 

s 

5 
9=- (cash 5) - 2Pr d< 

--XI :‘I 
Z (cash 5) -*” d[. 
ma 

(38) 

The inviscid solutions for 9 are the same as those for 
y, i.e. 9 ~0 for 0 < x < x, and 9 = 1 for x, < x < 1. 
So that (38) is a uniform approximation for tem- 
perature in the entire region, 0 < x < 1. 

At Pr = 1, (38) reduces to 9 = i(l + tanh 0, and 
the profiles of 9 and y (36a) coincide. For Pr >> 1, (38) 
reduces to 9 = i [I +erf(Pr”* c)]. Thus, temperature 
is uniform (but different) in both the inviscid regions 
and there is a temperature front (region of a high 
temperature gradient) near the separating surface, 
x = x,. 

Consider a cylindrical surface, r sin 0 = const. On 
this surface, the swirl velocity ZI# and 9 are zero below 

the jet and are constant and equal to their ambient 
values above the jet. Since the profiles, V~ and 9 
coincide across the jet as well, the distributions of the 
swirl velocity and temperature are the same on the 
entire cylindrical surface. Both swirl and ambient tem- 
perature are ‘locked’ in the upper flow cell while near 
the wall, the flow is swirl-free and the fluid has the 
wall temperature. Therefore, increasing swirl sup- 
presses wall heat transfer in the two-cellular regime, 
i.e. provides the opposite effect compared with the 
near-wall swirling jet. 

DISCUSSION 

The role of swirl in heat processes 
We have obtained a few exact solutions of the 

energy equation for (i) a point heat source and (ii) 
wall-fluid heat exchange which explain some of the 
important effects of swirl on convective heat transfer. 
These effects are : 

(a) Significant increase in heat (and mass) transfer. 
For heat diffusion from a hot submerged jet to a cold 
ambient fluid considered in problem (i), the maximal 
temperature decays (as the distance from the source 
increases) significantly faster in a swirling jet than in 
a swirl-free jet. As analytical solutions (15)-( 16) show, 
the maximal temperature is inversely proportional to 
the swirl Reynolds number Re,. The enhanced heat 
exchange occurs due to the development of the swirl- 
induced recirculatory cell that drastically increases the 
area of a contact surface between the jet and ambient 
fluid. 

Swirl also increases heat transfer from a wall as 
shown in problem (ii). At Pr = 1 and fixed swirl ratio 
Sr, heat flux is proportional to the swirl friction. For 
Pr >> 1, heat flux is proportional to Prli3 or P? 
depending on the flow pattern as solutions (32)-(34) 
show. 

(b) Heat isolation of a wall. On the other hand, 
swirl can cause flow separation from a wall that leads 
to the opposite effect-significant decrease in heat 
transfer. The flow is composed of a near-wall cell, 
where temperature is nearly equal to that of the wall, 
and an outer cell, where temperature is close to its 
value at infinity. For such flow patterns, heat transfer 
exponentially decays as Re, -+ co and, therefore, swirl 
can be used for heat isolation of wall. 

(c) Development of a temperature front. Between 
the flow cells considered in the problem (ii), there is a 
thin layer (‘front’) where temperature varies from the 
ambient to the wall values. Such a temperature front 
is observed in natural (tornadoes, firestorms and other 
meterological streams) and technological (vortex 
burners and chemical reactors) flows. The physical 
mechanism of the front development is heat con- 
vection by the flow converging toward the front from 
both sides (cells). The analytical solution (38) 
describes the temperature distributions in the conical 
front, 8 = O,, depending on Re,, Pr and 0,. 
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(d) Stabilization of heat and mass transfer. Effects 
(a) and (c) are useful for stabilization of heat and 
mass transfer, e.g. in vortex burners, where fuel is 
supplied by a swirling jet issuing from a nozzle into a 
combustion chamber [ 181. In the jet vicinity, the flow 
is similar to that shown in Fig. 3, and isolines of fuel 
concentration is similar to isotherms shown in Fig. 
5(d) (note that solutions (15) and (16) can be applied 
to the diffusion equation as well). The reversed flow 
in the near-axis cell transports heat upstream of com- 
bustion region, forming the temperature front. This 
enhances fuel pre-!neating and thus stabilizes combus- 
tion. The solutions obtained can be used for prediction 
and optimization Iof these processes (using a uniform 
eddy viscosity to model turbulence). The approach 
can be developed further to incorporate combustion 
prediction inside the temperature front. 

Thus, our solutions explain the mechanism and the 
influence of cont:rol parameters on effects (a)-(d). 
Another interesting result relates to the validity of the 
Reynolds analogy in swirling flows, discussed below. 

Reynolds analogy 
The analogy between velocity and temperature dis- 

tributions is an important feature of boundary layers 
allowing evaluation of heat transfer based only on 
the flow characteristics. The analogy holds at Pr = 1 
(which is a typical value for turbulent flows) due to 
the similarity of equations and boundary conditions 
for both. Usually, there is similarity for temperature 
and longitudinal velocity in near-wall boundary 
layers. 

The Reynolds a.nalogy is valid here for the annular 
conical jet in problem (i) where the profiles of the 
radial velocity and temperature coincide. The cen- 
trifugal force is ex,actly balanced by the pressure gradi- 
ent in the annular jet. This makes the boundary layer 
equations for the radial velocity and temperature 
identical. The analogy disappears when the annular 
jet transforms into the Long (near-axis) jet. In this 
boundary layer problem, the centrifugal force is not 
balanced by the pressure gradient only, the momen- 
tum equations are coupled, and the velocity and tem- 
perature profiles are qualitatively different (see Fig. 
7(b)-(d)). The analogy is restored as the flow trans- 
forms from the Long to the Schlichting swirl-free jet 
(Fig. 7(a)). 

It is interesting that in the problem (ii), there is the 
analogy between temperature and the swirl (but not 
radial!) velocity distributions. This analogy occurs for 
both the annular jet and near-wall boundary layer. 
Swirl and temperature profiles coincide even for the 
cases where the radial velocity dominates swirl (in the 
annular jet and in the near-wall layer for weak swirl). 
Moreover, the analogy is valid not only inside the jet 
but also in the entire region for the two-cell flow as 
Re,+ co. 

CONCLUSION 

Two heat problems for conical swirling jets are 
solved describing heat diffusion from the point source 
and heat transfer between a wall and ambient fluid. 
The analytical solutions obtained explicitly show the 
important effects of swirl which either enhances or 
suppresses heat exchange depending on the control 
parameters. These results are not only of scientific 
interest (being unique analytical solutions for heat 
transfer in swirling flows) but can also be utilized for 
technological applications (e.g. in vortex burners and 
chemical reactors). 

Acknowledgemenrs-This research was founded by the Air 
Force Office of Scientific Research Grant F49620-95-1-0302. 
The authors are grateful to Professor A. I. Leontiev and 
Prashant Haldipur for valuable discussions. 

1. 

2. 

3. 

4. 

5. 

6. 

1. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

REFERENCES 

Gupta, A. K., Lilley, D. G. and Syred, N., Swirl News, 
Chap. 1. Abacus P&s, New York, 1984. 
Hussain. F.. Goldshtik. M. and Yao. R. J.. The vortex 
liquid piston engine and some other vortex t&hnologies. 
Pioceedings of-Seminar on Fluid Mechanics Research. 
Dhaka. Bangladesh. 1995. DD. K75-K108. 
Cheng, R. <, Velocity andscalar characteristics of pre- 
mixed turbulent flames. Combustion and Flame, 1995, 
101, l-14. 
Cutler, A. D, Levey, B. S. and Kraus, D. K., Near-field 
flow of supersonic swirling jets. AIAA Journal, 1995,33, 
876-88 1. 
F&on, C. D., Ranque’s tube. Refr. Eng., 1950,58,473- 
419. 
Borissov, A. A., Kuibin, P. A. and Okulov, V. L., Cal- 
culation of the Ranque effect in the vortex tube. Acta 
Mechanica, Suppl., 1994,4,289%295. 
Rumer, Yu. B., Convective diffusion in a submerged jet. 
J. Appl. Math. and Mech., 1953, 17,143-744. 
Shtern, V. and Hussain, F., Hysteresis in swirling jets. 
Journal of Fluid Mechanics, 1996.309. l-44. 
Schlichting, H., Boundary-Lay& Theory, 6th edn. 
McGraw-Hill, New York, 1968, p, 218. 
Squire, H. B., The growth of vortex in turbulent flow. 
Aero. Quarf., 1965, 16, 302-306. 
Govindaraju, S. P. and Saffman, P. G., Flow in a tur- 
bulent trailing vortex. Physics @Fluids, 1971, 14,2074 
2080. 
Burrgraf, 0. R. and Foster, M. R., Continuation of 
breakdown in tornado-like vortices. Journal qf Fluid 
Mechanics, 1977,80, 685-704. 
Serrin, J., The swirling vortex. Phil. Trans. R. Sot. Lond. 
A, 1972,271,325-360. 
Rohsenow, W. N. and Hartnett, J. P., Handbook qfHeat 
Transfer. McGraw-Hill, New York, 1973. 
Long, R. R., A vortex in a infinite viscous fluid. Journal 
of Fluid Mechanics, 1961, 11, 61 l-623. 
Gregory, N., Stuart, J. T. and Walker, W. C., On the 
stability of three dimensional boundary layers with . 
application to the flow due to a rotating disk. Phil. Trans. 
R. Sot. Land. A., 1995.248.155-199. 
Eckert, E. R. G. and Drake, Jr, R. M., Analysis of Heat 
and Mass Transfer. McGraw-Hill, New York, 1972. 
Keller, J. J., Sattelmayer Th. and Thiiringer, F., Double- 
cone burner for gas turbine type 9 retrofit application. 
Proceedings of’ the 19th International Congress on Com- 
buslion Engines, CIMAC 1991, Florence, Italy. 


